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Nano-particles produced at high temperatures often undergo rapid coalescence
with complex associated rate laws. In this paper we develop and study the numeri-
cal properties of a stochastic algorithm for the modelling of nano-particle dynamics
in the free molecular regime. Following the work in A. Eibeck and W. Wagner
(2000, SIAM J. Sci. Comput. 22(3), 802–821), we model the system as a Markov
process and introduce a new majorant kernel that enables us to extend the use of
fictitious jumps to a wider class of problems. We also include a source term. We
study the convergence properties of the algorithm; the systematic error decreases
as 1

N . We then examine the efficiency of the algorithm by comparing it to a di-
rect simulation Monte Carlo (DSMC) algorithm, that described by D. T. Gillespie
(1975, J. Atmos. Sci. 32(10), 1977–1989). We also compare the efficiency of our
new majorant with the linear majorant used in A. Eibeck and W. Wagner (2001,
Ann. Appl. Prob. 11(4), 1137–1165). The improved stochastic algorithm compares
very favourably with the DSMC algorithm. The CPU time required for simulation
is orders of magnitude lower, and for low particle numbers, the CPU time increases
linearly with particle number, rather than as the square of the particle number (as
with the DSMC algorithm). Our majorant kernel enables us to simulate solutions to
a wider variety of problems than the linear majorant and also gives a significant gain
in efficiency. The results of this report promise excellent efficiency of simulation of
problems such as soot formation and synthesis of fumed silica, and also for exten-
sion to a more general class of problems in which the population balance equation
occurs. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper we examine the equation

∂

∂t
c(t, x) = 1

2

x−1∑
y=1

K (x − y, y)c(t, x − y)c(t, y) −
∞∑

y=1

K (x, y)c(t, x)c(t, y) + Icin(x),

(1.1)
with initial condition

c(0, x) = c0(x) ≥ 0, (1.2)

where K (x, y) is given by

K (x, y) =
(

3

4π

) 2
3
(

8πkT

ρ

) 1
2
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ρ

) 1
6
(
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x
+ 1

y

) 1
2 (

x
1

DF + y
1

DF

)2
(1.3)

and

cin(x) = δ(x − 1). (1.4)

Equation (1.1) is the discrete formulation of the Smoluchowski coagulation equation [18]
with the inclusion of a source term, which, along with Eqs. (1.2)–(1.4), is applicable to
several areas in the field of nano-particle technology, including soot formation [4] and
ceramic formation by flame aerosol technology [5].

The first term on the right-hand side (RHS) of Eq. (1.1) describes the rate of increase of
c(t, x), the concentration of particles of size x , due to coagulation of two smaller particles.
The second term describes the rate of decrease of c(t, x) due to coagulation of a particle
of size x with another particle. K (x, y) is the coagulation rate kernel, which describes the
rate of coagulation of particles of sizes x and y. The third term on the RHS of Eq. (1.1) is
a source term, describing the rate of production of particles of size x , which is linked to
gas–phase reaction rates.

The size of a particle, x , is taken to mean the mass (or volume) of a particle divided by
the mass (or volume) of the smallest possible particle. Thus, the size, x , can be considered
to be the number of monomers contained in a particle, and takes integer values.

Equations (1.1)–(1.4) describe the formation and subsequent Brownian coagulation of
particles in the free molecular regime. DF is a fractal dimension typically in the range 1.7
to 2.5 for nonspherical particles. When spherical particles are considered, such as in the
case of soot formation, we use DF = 3.

Flame aerosol technology is an established industrial process, but the fundamentals of
the process are not yet well understood. It is a difficult process to study due to the fact
that chemical reaction and particle growth take place extremely fast in typical process
conditions. The characteristic times for reaction and particle growth (under a second) are
smaller than the typical residence time in the reactor, and it is this, coupled with high
process temperatures, that makes it difficult to collect representative samples for particle
characterisation and model development.

Nevertheless, models have been proposed which make use of the population balance
equation (pbe). The general form of the population balance equation originates from the
statistical mechanical formulations of Hulbert and Katz [10] and is specifically described in
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[15]. Coagulation of particles was, however, described by Smoluchowski [18] before then.
The models proposed for SiO2 formation include complicated coagulation rate terms and
therefore cannot be solved except by numerical methods. Previously, restrictions have been
introduced into the models, to allow solution by the method of moments. These have included
assuming the particle size distribution to be monodisperse [13] or log-normal [19], or being
restricted to a particular value of the coagulation rate kernel [3]. It is often assumed that
particle growth rate merely depends on coagulation and that with a homogeneous collision
kernel (see Section 2.2), self-preserving size distributions are obtained [12]. However, this
is not true when there is a significant rate of formation of monomer particles [20]. In
this case, bulk properties (number density, mean particle size) can be well predicted, but
polydispersity effects are predicted poorly.

Alternatively, sectional techniques have been proposed for batch [8] and continuous [9]
systems. These techniques go some way towards modelling particle size distributions, but
they become prohibitively computationally expensive when extended to multiple dimen-
sions. It is with this in mind that a new solution method is sought for the population balance
equation.

The purpose of this paper is to formulate a solution method for the model describing
the formation and coagulation of fumed silica in the process of flame synthesis. The model
will take the form of the Smoluchowski coagulation equation and will include a source
term, modelling monomer formation. There will be no assumptions regarding the form of
the particle size distribution; rather, the initial conditions will be formulated, and the time
evolution of the particle size distribution (PSD) will be examined.

To solve Eq. (1.1), we introduce a stochastic particle system. Stochastic methods have
been used before to simulate solutions to the population balance equation. These have
taken the form of direct simulation methods [7, 14], constant number simulation [17],
Nanbu type simulation [16], and simulation using fictitious jumps [1]. These methods have
only rarely included a source term [7]. We formulate the simulation algorithm to model this
extra term, and we include it in the general solution algorithm. To simulate the coagulation
steps, we introduce a new, efficient majorant kernel and use fictitious jumps following the
ideas in [1]. Although a linear majorant kernel has been proposed in [2] for the case of
spherical particles, our new majorant kernel is applicable to a wider variety of problems.
Combining these techniques leads to a highly efficient simulation procedure, which will
then be extendable to other situations. To give an idea of its efficiency, we compare it
to direct simulation Monte Carlo (DSMC) methods as outlined by Ramkrishna [14] and
proposed as an algorithm by Gillespie [6, 7] among others, and to the method in [1] using
the linear majorant.

This paper is organised as follows: In Section 2 we describe the formulation of the
stochastic model. Section 2.1 introduces the stochastic particle system and the notion of
fictitious jumps for simulation of coagulation. Section 2.2 details where the use of the
linear majorant kernel breaks down and the formulation of a new, efficient majorant kernel.
Section 2.3 discusses an efficient method of generating the required distribution functions.
Section 2.4 describes how the source term is simulated, and Section 2.5 describes in detail
the stochastic algorithm used to simulate solutions to Eq. (1.1).

In Section 3 we present the results of numerical studies on our solution algorithm.
Section 3.1 contains sample results in the form of particle size distributions and moments of
the PSD. Section 3.2 studies the convergence properties of the algorithm, and in Section 3.3
the efficiency of the algorithm is examined. This is done by looking at the simulation times
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in comparison to both the DSMC algorithm, proposed by Gillespie [7], and to simulation
using the linear majorant kernel. We also look at the acceptance efficiency of the linear
majorant kernel and our new majorant. Finally, in Section 4 we present our conclusions.

2. THE STOCHASTIC MODEL

2.1. Markov Process with Fictitious Jumps

To simulate the coagulation process in Eq. (1.1), we follow the method introduced in [1],
using a Markov process with fictitious jumps.

For a detailed description of the method, we refer the reader to Section 2 of [1] and give
a brief summary of the motivation and method here.

Consider a stochastic particle system

xi (t), i = 1, 2, . . . , n(t), t ≥ 0, (2.1)

where xi (t) represents the size of particle i at time t , and n(t) is the (time varying) number
of particles in the system. Recall that the particle sizes only take integer values. The initial
system is chosen so as to approximate the initial condition (1.2).

An approximation to a measure-valued version of (1.1) is sought; our measure-valued
solution takes the form

U N (t, x) = p(x) = 1

N

n∑
i=1

δ(x − xi ), xi > 0, n, N = 1, 2, . . . . (2.2)

Here, U N (t, x) is a sequence of jump processes, i.e., a series of random variables, whose
subsequent state depends only on the current state, not on its history. It is a Markov process.
p(x) indicates a general representation of the state of the system at any point.

Using this representation, the concentration c(t, x) is approximated by

c(t, x) ∼ 1

N
#{i : xi (t) = x}. (2.3)

From this relation, it can be seen that the parameter N , known as the particle number, can
be considered to be the equivalent of a normalisation parameter or sample size.

The subsequent coagulation of particles is a Markov process, in which individual coag-
ulation events are separated by an exponentially distributed waiting time [7]. The waiting
time, τ , is generated according to

Prob{τ(p) ≥ s} = exp(−ρK (p) · s), s ≥ 0, (2.4)

where ρK (p) is the waiting-time parameter (for the coagulation process), given by

ρK (p) = 1

2N

∑
1≤i 
= j≤n

K (xi , x j ). (2.5)

For each event, particle indices i and j must be chosen according to the coagulation rate
kernel, i.e., according to the probabilities

K (xi , x j )∑
1≤i 
= j≤n K (xi , x j )

, (2.6)
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and then the system makes the jump

p(x) → p(x) − δ(x − xi )

N
− δ(x − x j )

N
+ δ(x − xi − x j )

N
, (2.7)

i.e., particles of sizes xi and x j are removed and a particle of size xi + x j is added.
Generation of the joint probability distribution of i and j requires summing over a number

of terms of the order of n2, so a majorant kernel K̂ (xi , x j ) is introduced according to

K (xi , x j ) ≤ K̂ (xi , x j ), xi , x j > 0, (2.8)

such that the waiting time, τ , is then efficiently generated with the parameter

ρ̂K (p) = 1

2N

∑
1≤i 
= j≤n

K̂ (xi , x j ), (2.9)

and the joint probability distribution

K̂ (xi , x j )∑
1≤i 
= j≤n K̂ (xi , x j )

(2.10)

enables independent generation of the indices i and j , reducing the computational time to
the order of n.

In order that this method still gives convergence to the solution of a measure-valued
version of (1.1) in the limit N → ∞, fictitious jumps are introduced. These are additional,
null events that occur with probability

1 − K (xi , x j )

K̂ (xi , x j )
(2.11)

when the indices i and j have been chosen.

2.2. Majorant Kernel

A linear majorant kernel has been proposed in [2] for the kernel (1.3), in the case DF = 3,
namely:

√
1

x
+ 1

y

(
x1/3 + y1/3

)2 ≤ c(x + y), c > 0. (2.12)

However, this majorant has several drawbacks, especially when we try to apply it to the case
of DF < 3, stemming from the fact that it does not have the same degree of homogeneity
as the coagulation kernel itself.

Recall that a kernel is homogeneous with degree γ if

K (λx, λy) = λγ K (x, y). (2.13)

So in this case, the majorant is homogeneous with degree 1, and the kernel (1.3) itself is
homogeneous with degree 2

DF
− 1

2 .
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It can easily be shown that the linear majorant (2.12) is only valid for DF ≥ 2 by con-
sidering the leading order terms of the kernel and its linear majorant. We have, for any
x, y: √

1

x
+ 1

y

(
x1/DF + y1/DF

)2 ≥
√

1

y
x2/DF . (2.14)

Clearly for DF < 2 this RHS increases faster than linearly with increasing x , and there is
not a value of c such that the required majorant inequality (2.8) holds for all x . Typical
values for DF for nonspherical particles are between 1.7 and 2.5 [12], so for the general
case a new majorant kernel must be found.

Even for the case DF ≥ 2 we encounter problems. The value of the constant c depends
on the minimum value, xmin, that the size can take:

c = 2
√

2x
2

DF
− 3

2

min . (2.15)

It is then clear that the acceptance efficiency of the majorant,

K (x, y)

K̂ (x, y)
, (2.16)

is also dependent on the minimum size. For x = y we find

K (x, x)

K̂ (x, x)
=
(

x

xmin

) 2
DF

− 3
2

, (2.17)

and for y = xmin, we find, in the limit x � y:

lim
x→∞

K (x, xmin)

K̂ (x, xmin)
= lim

x→∞
1

2
√

2

(
x

xmin

) 2
DF

−1

. (2.18)

These both have a lower limit of zero.
In our case, xmin = 1, so there is a well defined minimum size, which is equal to the size

of the particles introduced in the source term in (1.1) and is therefore of the same order of
magnitude as most of the particles in the system, at least for low simulation times. However,
there are situations in which this is not the case; the ratio x

xmin
is then correspondingly larger,

and much lower acceptance efficiency is encountered. For example, in the study of oxidation
kinetics in flames, it may be desirable to seed a flame with particles much larger than the
minimum size available.

In cases like this, the minimum particle size has a direct bearing on the efficiency of the
majorant kernel and therefore on the efficiency of simulation. We seek a majorant kernel
that is homogeneous with the same degree as the actual coagulation kernel.

In the subsequent analysis, we use the dimensionless form of the coagulation kernel (1.3):

K (x, y) =
(

1

x
+ 1

y

) 1
2(

x
1

DF + y
1

DF

)2
. (2.19)

Note that the function

c̃(t, x) = α2c(α1α2t, x), t ≥ 0, x > 0, α1, α2 ≥ 0 (2.20)
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solves Eq. (1.1) with the kernel K̃ = α1 K instead of K and initial condition c̃0 = α2c0 instead
of c0. The scaling factors

α1 =
(

3

4π

) 2
3
(

8πkT

ρ

) 1
2
(

m1

ρ

) 1
6

(2.21)

and α2, which will be specific to a given situation, can be calculated after a general simulation
takes place, and the dimensionless time and concentration can be scaled by these factors to
give a dimensional answer.

A majorant kernel is constructed by using the inequalities

(a + b)ε ≤ 2ε−1(aε + bε) ε ≥ 1, a, b > 0 (2.22)

and

(a + b)ε ≤ (aε + bε) 0 < ε < 1, a, b > 0. (2.23)

We now have

(
1

x
+ 1

y

) 1
2(

x
1

DF + y
1

DF

)2
≤ 2
(

x− 1
2 + y− 1

2

)(
x

2
DF + y

2
DF

)
. (2.24)

In fact, the maximum value of the ratio K
K̂

is less than 1, so this majorant is not as efficient
as it could be. By examining the maximum value of K

K̂
, we find that it is more useful to use

(
1

x
+ 1

y

) 1
2(

x
1

DF + y
1

DF

)2
≤

√
2
(

x− 1
2 + y− 1

2

)(
x

2
DF + y

2
DF

)
(2.25)

in the case 1.7 < DF < 2.5, and

(
1

x
+ 1

y

) 1
2(

x
1
3 + y

1
3

)2
≤ 1.4178

(
x− 1

2 + y− 1
2

)(
x

2
3 + y

2
3

)
(2.26)

for DF = 3. Both of these are clearly more efficient majorant kernels.
In this paper we take a value for DF from the middle of the typical range for nonspherical

particles: DF = 2.1.
Now when we consider the acceptance efficiency of the majorant, we find, for x = y:

K (x, x)

K̂ (x, x)
= 1. (2.27)

And for y = xmin, x � y we find:

lim
x→∞

K (x, xmin)

K̂ (x, xmin)
= 1√

2
. (2.28)

Because the kernel (1.3) and its majorant (2.25) are homogeneous with the same degree,
the dependence of the acceptance efficiency on the minimum size is removed. Also, we find
that we can use this new majorant for the case DF < 2.
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The majorant kernel can be multiplied out to give

K̂ (xi , x j ) =
√

2

(
x

2
DF

− 1
2

i + x
2

DF
− 1

2

j + x
2

DF
i x

− 1
2

j + x
− 1

2
i x

2
DF
j

)
, (2.29)

which can be considered as being composed of

K̂ = K̂ 1 + K̂ 2 + K̂ 3 + K̂ 4. (2.30)

The choice of which of these majorant components to use to generate indices i and j is then
made probabilistically, as described in Section 2.2 of [1].

It should be noted that

K̂ 1(xi , x j ) =
√

2

(
x

2
DF

− 1
2

i

)
and K̂ 2(xi , x j ) =

√
2

(
x

2
DF

− 1
2

j

)

give identical distributions for i and j , except with the indices swapped. The same is true
for K̂ 3 and K̂ 4. Because the coagulation step of the stochastic algorithm is symmetrical
with respect to the indices i and j , the order in which they are generated does not matter.
Therefore, for the purposes of generating the particle indices, we can consider just two
different functions, K̂ 1 and K̂ 3. Thus we calculate a value of ρ̂(p) associated with each
kernel component according to

ρ̂1(p) = 1

2N

∑
1≤i 
= j≤n

√
2

(
x

2
DF

− 1
2

i

)
and ρ̂3(p) = 1

2N

∑
1≤i 
= j≤n

√
2

(
x

2
DF

i x
− 1

2
j

)
(2.31)

and choose K̂ 1 (or otherwise K̂ 3) to generate indices i and j with probability

ρ̂1(p)

ρ̂1(p) + ρ̂3(p)
. (2.32)

Note that we could have simply multiplied out the second bracket of (2.19) rather than
using the inequality (2.22) and obtained

K̂ = x
2

DF
− 1

2 + y
2

DF
− 1

2 + x
2

DF y− 1
2 + x− 1

2 y
2

DF + 2x
1

DF
− 1

2 y
1

DF + 2x
1

DF y
1

DF
− 1

2 . (2.33)

However, using this kernel would require at each coagulation step the storage and update
of two more quantities,

n∑
i=1

x
1

DF
− 1

2

i and
n∑

i=1

x
1

DF
i , (2.34)

which would reduce the efficiency of the simulation.

2.3. Organisation of Particle System

For efficient simulation and generation of size-dependent distributions, the stochastic
particle sizes (x1, x2 . . .) are stored in a series of arrays (or bins) as described in [1]. The
particles are organised into γ groups, i.e., their sizes are denoted by

yz,k, z = 1, . . . , γ, k = 1, . . . , αz, (2.35)



218 GOODSON AND KRAFT

so that

bz−1 < yz,k ≤ bz, ∀z = 1, . . . , γ k = 1, . . . , αz, (2.36)

where

0 ≡ b0 < b1 < · · · < bγ (2.37)

and

xmax ≤ bγ . (2.38)

xmax is the upper bound for the particle size, which will depend on the initial condition and
the inflow rate.

The group size bounds, bz , are chosen to be related by

bz = β z−1, z = 1, 2, . . . , (2.39)

where β > 1.
Then, in order to generate the distribution

xε
j∑n

l=1 xε
l

, j = 1, . . . , n, (2.40)

the choice of group can be made by the discrete inversion (linear search) method, while
the choice of particle index within the group can be done by acceptance–rejection, with a
minimum efficiency of 1/βε.

2.4. Source Term

To model the source term in Eq. (1.1), we introduce a stochastic particle system for the
source particle size distribution, xin

i , i = 1, 2, . . . , nin. In this case, the source particle size
distribution can be modelled as

U N
in (x) = 1

N

nin∑
i=1

δ
(
x − xin

i

)
. (2.41)

The relationship between the source particle number, nin, and the initial particle number,
n(0), is given by

lim
N→∞

∫
φ(x)U N

in (x) dx =
∫

φ(x)cin(x) dx. (2.42)

In the case φ(x) = 1:

∫
cin(x) dx = lim

N→∞

∫
U N

in (x) dx = nin

N
. (2.43)
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Similarly:

∫
c0(x) dx = lim

N→∞

∫
U N (0, x) dx = n(0)

N
. (2.44)

Thus the relationship between nin and n(0) is given by

nin

n(0)
=
∫

cin(x) dx∫
c0(x) dx

, (2.45)

and in our case of cin(x) = δ(x − 1) we have nin = N .
Stochastic simulation of a source term proceeds similarly to the case of coagulation.

Single events are separated by an exponentially distributed waiting time (2.4), with the
parameter ρin given by

ρin(p) = Inin. (2.46)

Each event is described by the jump,

p(x) → p(x) + δ(x − 1)

N
, (2.47)

i.e., a particle of size 1 is added to the system.

2.5. Algorithm

Extension of stochastic simulation to include more than one process proceeds as follows.
For each process (labelled α) occurring, an associated waiting time parameter, ρα(p) is
derived. Then, the waiting time between events is exponentially distributed (2.4) with pa-
rameter ρ(p) = ∑

α ρα(p). The event, α, occurring after this time, is chosen according to
the probabilities ρα(p)

ρ(p)
, and the stochastic jump associated with this event is performed.

Combining the simulation methods for the processes of coagulation and particle inception
results in the improved stochastic algorithm we use to simulate solutions to Eq. (1.1):

1. Generate the initial state U N (0) = p ∈ SN .
2. Wait an exponentially distributed time step τ with parameter (cf. (2.4))

ρ̂(p) = ρ̂K (p) + ρin(p)

=
√

2

N

(
(n − 2)

n∑
i=1

x
2

DF
− 1

2

i +
n∑

i=1

x
2

DF
i

n∑
i=1

x
− 1

2
i

)
+ Inin.

3. With probability

ρin(p)

ρ̂(p)
,

go to step 4. Otherwise go to step 5.
4. Perform a source step, i.e.,

(i) Add a cluster of size 1 to the system.
(ii) Go to step 2.
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5. Perform a coagulation step, i.e.,
(i) With probability (cf. (2.31))

ρ̂1(p)

ρ̂1(p) + ρ̂3(p)
,

go to step 5(ii). Otherwise go to step 5(iii).
(ii) Use K̂ 1 to generate indices i and j , i.e.,

a. Generate i according to
A. Choose the group index, z, according to the probabilities

Pz = 1

c

αz∑
k=1

y
2

DF
− 1

2

z,k , z = 1, . . . , γ,

where

c =
n∑

l=1

x
2

DF
− 1

2

l =
γ∑

z=1

αz∑
k=1

y
2

DF
− 1

2

z,k .

B. Choose the particle index k = 1, . . . , αz uniformly within the group z.
C. The particle index is accepted with probability

y
2

DF
− 1

2

z,k

b
2

DF
− 1

2
z

.

Otherwise, go to step 5(ii)a.B.
b. Generate j uniformly on the set i = 1, . . . , n.
c. If i = j return to step 5(ii). Otherwise go to step 5(iv).

(iii) Use K̂ 3 to generate indices i and j , i.e.,
a. Generate i according to

A. Choose the group index, z, according to the probabilities

Pz = 1

c

αz∑
k=1

y
2

DF
z,k , z = 1, . . . , γ,

where

c =
n∑

l=1

x
2

DF
l =

γ∑
z=1

αz∑
k=1

y
2

DF
z,k .

B. Choose the particle index k = 1, . . . , αz uniformly within the group z.
C. The particle index is accepted with probability

y
2

DF
z,k

b
2

DF
z

.

Otherwise, go to step 5(iii)a.B.



STOCHASTIC ALGORITHM FOR NANO-PARTICLE DYNAMICS 221

b. Generate j according to
A. Choose the group index, z, according to the probabilities

Pz = 1

c

αz∑
k=1

y
− 1

2
z,k , z = 1, . . . , γ,

where

c =
n∑

l=1

x
− 1

2
l =

γ∑
z=1

αz∑
k=1

y
− 1

2
z,k .

B. Choose the particle index k = 1, . . . , αz uniformly within the group z.
C. The particle index is accepted with probability

y
− 1

2
z,k

b
− 1

2
z−1

.

Otherwise, go to step 5(iii)b.B.
c. If i = j return to step 5(iii). Otherwise go to step 5(iv).

(iv) With probability

K (xi , x j )

K̂ (xi , x j )
,

perform a coagulation jump, i.e., remove the particles xi and x j and add a particle of size
xi + x j . Otherwise, the interaction is fictitious, i.e., nothing changes.

(v) Go to step 2.

3. NUMERICAL RESULTS

3.1. Sample Results

To study the efficiency of our improved stochastic algorithm we perform repeated simu-
lations with varying values of N and calculate confidence intervals for the results we obtain.
In all our simulations we take I = 0.5 and DF = 2.1 and we set the initial condition to be

c(0, x) = c0(x) =
{

1 for x = 1,

0 otherwise.
(3.1)

Our simulations are performed over the time interval t = [0, 10].
Figures 1 and 2 show typical results that can be obtained from the stochastic simulation.

Figure 1 shows a histogram of the particle size distribution, with the lower confidence bound
given by the solid line and the upper confidence bound given by the dotted line. The particle
sizes are grouped in bins as described in Section 2.3 with a value of β = 2, in order to show
the increasing concentration of the larger particles as time increases. It can also be seen that
the concentration of smaller particles remains approximately constant as time increases,
due to the formation of new monomer particles, as modelled by the source term.

Figure 2 shows the time evolution of three moments of the PSD. As expected, the higher
the moment, the more sensitive it is to the larger particle sizes, and therefore the wider the
confidence bounds.
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FIG. 1. Particle size distributions at various times.

3.2. Convergence

To study the validity of our improved stochastic algorithm, it is useful to consider the
convergence properties, i.e., as we increase N , and therefore increase the required CPU
times, how quickly does the simulated solution converge to the exact solution?

Following [11], confidence intervals are calculated as follows. Typical macroscopic
properties, such as moments of the particle size distribution, are functionals of the
form

F(t) =
∫ ∞

0
φ(x)c(t, x) dx. (3.2)

These functionals are approximated (as N → ∞) by the random variable

ξ (N )(t) = 1

N

n(t)∑
i=1

φ(xi (t)). (3.3)

In order to estimate the expectation and the random fluctuations of the estimator ξ (N )(t),
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FIG. 2. Moments of the particle size distribution.
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a number L of independent runs are performed. The corresponding values of the random
variable are denoted by ξ (N ,1)(t), . . . , ξ (N ,L)(t). The empirical mean value of ξ (N )(t) is
defined as

η
(N ,L)
1 (t) = 1

L

L∑
l=1

ξ (N ,l)(t). (3.4)

The variance of ξ (N )(t) satisfies

Var ξ (N )(t) ≡ E
[
ξ (N )(t) − Eξ (N )(t)

]2 = E
[
ξ (N )(t)

]2 − [Eξ (N )(t)
]2

(3.5)

and is estimated by the empirical variance defined as

η
(N ,L)
2 (t) = 1

L

L∑
l=1

[
ξ (N ,l)(t)

]2 − [η(N ,L)
1 (t)

]2
. (3.6)

The empirical mean (3.4) is used to approximate the macroscopic quantity (3.2). The error
of this approximation is denoted as

e(N ,L) = ∣∣η(N ,L)
1 (t) − F(t)

∣∣ (3.7)

and consists of the following two components. The systematic error is the difference be-
tween the mathematical expectation of the random variable (3.3) and the exact value of the
functional, i.e.,

e(N ,L)
sys = Eξ (N )(t) − F(t). (3.8)

The statistical error is the difference between the empirical mean value and the expected
value of the random variable, i.e.,

e(N ,L)
stat (t) = η

(N ,L)
1 (t) − Eξ (N )(t). (3.9)

The random variable

η
(N ,L)
1 (t) − Eξ (N )(t)√

Var η
(N ,L)
1 (t)

(3.10)

has asymptotically (for L ≥ 50) a standard normal distribution, as a consequence of the
central limit theorem. Thus

Prob



∣∣η(N ,L)

1 (t) − Eξ (N )(t)
∣∣√

Var η
(N ,L)
1 (t)

≤ ap


∼p, p ∈ (0, 1), (3.11)

where the value of ap is determined from statistical tables.
Note that

Var η
(N ,L)
1 (t) = 1

L
Var ξ (N )(t) ∼ 1

L
η

(N ,L)
2 (t). (3.12)
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A confidence interval can therefore be constructed as

Ip =
[
η

(N ,L)
1 (t) − ap

√
η

(N ,L)
2 (t)

L
, η

(N ,L)
1 (t) + ap

√
η

(N ,L)
2 (t)

L

]
, (3.13)

where p is the confidence level. This means that

Prob
{

Eξ (N )(t) ∈ Ip
} = Prob

{∣∣e(N ,L)
stat (t)

∣∣ ≤ ap

√
η

(N ,L)
2 (t)

L

}
∼ p. (3.14)

Thus, the value

c(N ,L)
p (t) = ap

√
η

(N ,L)
2 (t)

L
(3.15)

is a probabilistic upper bound for the statistical error.
In this study, a confidence level of 99.9% or p = 0.999 with ap = 3.29 has been used.
In order to describe the statistical error in [0, T ] we split this time interval into M

equidistant subintervals of length �t according to the discretisation

ti = i�t, i = 0, 1, . . . , M, (3.16)

with tM = T and use the quantity

cstat = max
i

{
c(N ,L)

p (t)
}

(3.17)

as a measure for the statistical error.
To study the systematic error of the solution algorithm we use an approximation ζ(t) of

the corresponding macroscopic quantity F(t) obtained using a single run of the algorithm
with as high a value of N as is feasible. Here we use N = 107. Then the error

ẽ(N ,L)(t) = ∣∣η(N ,L)
1 (t) − ζ(t)

∣∣ (3.18)

is a good approximation of the true error e(N ,L)(t). In order to get an expression for (3.18)
on [0, T ] we calculate the quantity

ctot = 1

M + 1

M∑
i=0

ẽ(N ,L)(ti ) (3.19)

as an estimate for the average error in the time interval [0, T ].
The errors ctot and cstat are calculated for the average particle size, i.e., the ratio of the

first moment of the PSD to the zeroth. By using this term, we study a property both of the
total number of particles and of the size of the particles in the population. Table I contains
the results of our numerical study. In Table I, tsr is the CPU time (in seconds) needed for a
single run. The simulations were all performed on an 866-MHz Pentium PC.

For a large enough number of runs, so that the systematic error is larger than the statistical
error, we can estimate the order of convergence. Figure 3 shows ctot ± cstat plotted against
N . The solid line shows the slope 1

N .
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TABLE I

Computational Study for Improved Stochastic Algorithm (N × L = 6.4 × 107)

N cstat ctot tsr tsr /N × 104

125 0.0773 2.13 0.012 0.94
250 0.0681 1.26 0.024 0.97
500 0.0633 0.697 0.048 0.96

1,000 0.0607 0.368 0.097 0.97
2,000 0.0601 0.180 0.22 1.1
4,000 0.0601 0.0896 0.42 1.0
8,000 0.0609 0.0423 0.92 1.2

16,000 0.0616 0.0156 2.1 1.3

3.3. Efficiency

To give an idea of the efficiency of the improved stochastic algorithm, we compare it with
a standard direct solution Monte Carlo algorithm (DSMC); we use the algorithm proposed
by Gillespie [7]. We also examine the efficiency of our new majorant kernel by comparison
with the linear majorant (2.12). Table II and Fig. 4 show greatly improved efficiency of
the new algorithm. It can be seen that for the DSMC algorithm, the single-run CPU time,
tsr, increases as N 2. According to (2.5), the average number of time steps in a given time
interval will be proportional to N , and due to the method of selecting i and j , the CPU time
to perform each coagulation step is proportional to N .

In contrast, we have a number of different cases, depending on the value of N , that our
improved stochastic algorithm gives for the relationship between tsr and N . For low N , our

0.01

0.1

1

10

100 1000 104

c to
t

N

FIG. 3. Order of convergence for improved stochastic algorithm. The solid line shows the slope 1
N

.
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TABLE II

Computational Study for DSMC Algorithm (N × L = 8 × 105)

N cstat ctot tsr tsr /N × 102

125 0.684 2.16 0.14 0.11
250 0.615 1.27 0.55 0.21
500 0.568 0.704 2.1 0.42

1,000 0.525 0.399 8.3 0.83
2,000 0.555 0.162 32 1.6
4,000 0.533 0.118 130 3.2
8,000 0.611 0.0566 497 6.2

16,000 0.612 0.0459 1980 12

algorithm gives tsr proportional to N . The number of time steps in a given time interval is
still proportional to N , but the slowest step in the process is the calculation of the confidence
intervals as described in Section 3.2. This process is not dependent on N , so the overall
CPU time for a single run is proportional to N . It is only as N increases that the rate of
increase of tsr goes beyond linear. As N increases, the next step of the algorithm to dominate
is the bin selection step (step 5(ii)a, 5(iii)a, or 5(iii)b in the simulation algorithm). As the
number of bins to choose from increases as the logarithm of the particle number (cf. (2.38)
and (2.39)), the CPU time of each coagulation step will increase as (ln N ). Finally, due to
the necessity of reorganisation of the particle size array at each coagulation step, we reach
the case where the CPU time for each coagulation step increases as N and therefore tsr is
proportional to N 2 (as in the case of the DSMC algorithm). But this does not happen until
the particle number is much greater than is necessary for a reasonably accurate simulation.

0.01

0.1

1

10

100

1000

104

100 1000 104

t sr

N

FIG. 4. CPU time for a single run for the DSMC algorithm (solid) and our improved algorithm (dotted).
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FIG. 5. CPU time for a single run for the linear majorant and for our new majorant. tsim is the simulation
time.

Figure 5 compares the single run CPU time (for constant N ) as a function of tsim, the
time variable in the simulation, using our new majorant kernel and the linear majorant.
Without the source term, the CPU time for both kernels levels off fairly soon, as by this
point there are very few particles left in the system (with coagulation as the only process,
the number of particles is strictly decreasing). When the source term is included, the CPU
time is significantly increased. When our new majorant is used, CPU time increases linearly
with tsim. For the linear majorant, CPU time increases slightly faster than linearly. In both
cases, our new majorant gives a reasonable (10–50%) cut in CPU time as compared with the
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FIG. 6. Comparison of the efficiency of the two majorants.
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FIG. 7. CPU time for a single run for the linear majorant and our new majorant. N is the particle number.
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FIG. 8. Order of convergence for the DSMC algorithm. The solid line shows the slope 1
N

.

linear kernel, but the ratio of CPU times (linear to new) increases with increasing tsim. This
can be explained by considering the acceptance efficiency (2.16) of the two kernels. At later
simulation times, the particle system contains larger particles. The ratio x

xmin
increases, and

the efficiency of the simulation decreases. Figure 6 shows the relative number of fictitious
jumps for both majorants, with and without a source term.

The new majorant kernel gives an increase in efficiency of simulation that is more signi-
ficant for longer simulation times. These results, for a constant particle number, N , can be
considered to hold for other particle numbers by examining Fig. 7, which shows CPU time
increasing linearly with particle number. Thus, we can expect a similar gain in efficiency
regardless of particle number.

The order of convergence for the DSMC algorithm is compared with 1
N in Fig. 8. Due to

the poor efficiency of this method it is not feasible to perform sufficient runs such that the
systematic error is significantly larger than the statistical error. However, the data do seem
to fit the 1

N line plotted on the figure. This is to be expected, as the convergence of U N (t, x)

does not depend on any majorant that is used (or not used).

4. CONCLUSIONS

We have developed and studied an improved stochastic simulation algorithm to model
the nano-particle dynamics applicable to, for example, the production of silica by flame
aerosol synthesis (cf. Eqs. (1.1)–(1.4)). The coagulation was simulated according to [1],
with the introduction of a new majorant kernel. The new majorant kernel allows us to study
a wider range of problems than the linear majorant, previously suggested in [2]. A source
term was included in the population balance equation and was also simulated.
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The results can easily be presented in the form of particle size distributions (PSDs) or
any function of the PSDs, such as moments.

The convergence properties of the algorithm were studied, to give an indication of the
decrease of the systematic error when the particle number, N , is increased. For a very large
number of runs, the statistical error is smaller than the systematic error, and the systematic
error decreases as 1

N . It is likely however, that for normal simulations, the number of runs
will be sufficiently small that the systematic error is smaller than the statistical error and
hence the exact solution will lie within the calculated confidence bounds.

The simulation algorithm was compared to a standard direct simulation Monte Carlo
(DSMC) algorithm (i.e., one not using fictitious jumps) to determine the improvement in
efficiency. We also compared the efficiency of our new majorant kernel with that of the
linear kernel.

By comparing it to the DSMC algorithm proposed by Gillespie [7] we see that we have
reduced CPU times by orders of magnitude and made it possible to achieve accuracy that the
inefficiency of the DSMC algorithm prohibited. We also achieve good gains in efficiency
(up to a 50% cut in CPU time) by using our new majorant kernel in place of the linear
majorant, while also being able to study a wider range of problems. This is very promising
for future work, both in the study of fumed silica and in other fields, such as soot formation,
where the population balance equation is used.

ACKNOWLEDGMENTS

The authors thank Andreas Eibeck and Wolfgang Wagner for useful discussions and valuable advice. One of
the authors (MG) thanks the EPSRC for providing the stipend for his Ph.D.

REFERENCES

1. A. Eibeck and W. Wagner, An efficient stochastic algorithm for studying coagulation dynamics and gelation
phenomena, SIAM J. Sci. Comput. 22(3), 802 (2000).

2. A. Eibeck and W. Wagner, Stochastic particle approximations for Smoluchowski’s coagulation equation, Ann.
Appl. Probab. 11(4), 1137 (2001).

3. M. Frenklach, Dynamics of discrete distribution for Smoluchowski coagulation model, J. Colloid Interface
Sci. 108(1), 237 (1985).

4. M. Frenklach and H. Wang, Detailed mechanism and modeling of soot particle formation, in Soot Formation
in Combustion—Mechanisms and Models, edited by H. Bockhorn (Springer-Verlag, Berlin/New York, 1994),
pp. 165–192.

5. S. K. Friedlander, Smoke, Dust and Haze (Wiley, New York, 1977).

6. D. T. Gillespie, The stochastic coalescence model for cloud droplet growth, J. Atmos. Sci. 29, 1496 (1972).

7. D. T. Gillespie, An exact method for numerically simulating the stochastic coalescence process in a cloud,
J. Atmos. Sci. 32(10), 1977 (1975).

8. M. J. Hounslow, R. L. Ryall, and V. R. Marshall, A discretized population balance for nucleation, growth and
aggregation, AIChE J. 34(11), 1821 (1988).

9. M. J. Hounslow, A discretised population balance for continuous systems at steady state, AIChE J. 36(1), 106
(1990).

10. H. M. Hulbert and S. Katz, Some problems in particle technology. A statistical mechanical formulation, Chem.
Eng. Sci. 19, 555 (1964).

11. M. Kraft and W. Wagner, Numerical Study of a Stochastic Particle Method for Homogeneous Gas Phase
Reactions, Technical report 570, Weierstrass Institute for Applied Analysis and Stochastics (2000).



232 GOODSON AND KRAFT

12. T. Matsoukas and S. K. Friedlander, Dynamics of aerosol agglomerates formation, J. Colloid Sci. 146(2), 495
(1991).

13. S. Panda and S. E. Pratsinis, Modeling the synthesis of aluminum particles by evaporation–condensation in
an aerosol flow reactor, Nanostructured Mater. 5(7–8), 755 (1995).

14. D. Ramkrishna, Population Balances. Theory and Applications to Particulate Systems in Engineering
(Academic Press, San Diego, 2000).

15. A. D. Randolph and M. A. Larson, Theory of Particulate Processes (Academic Press, London, 1988).

16. K. K. Sabelfeld, S. V. Rogasinsky, A. A. Kolodko, and A. I. Levykin, Stochastic algorithms for solving
Smoluchovsky coagulation equation and applications to aerosol growth simulation, Monte Carlo Meth. Appl.
2(1), 41 (1996).

17. M. Smith and T. Matsoukas, Constant-number Monte Carlo simulation of population balances, Chem. Eng.
Sci. 53(9), 1777 (1998).
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